skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bird, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The goal of this paper is to describe the science verification of Milky Way Mapper (MWM) APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) data products published in Data Release 19 (DR19) of the fifth phase of the Sloan Digital Sky Survey (SDSS-V). We compare MWM ASPCAP atmospheric parametersTeff, logg, 24 abundances of 21 elements (carbon, nitrogen, and oxygen have multiple sources for deriving their abundance values) and their uncertainties determined from Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph spectra with those of the literature and evaluate their accuracy and precision. We also test the zero-point calibration of thevradderived by the APOGEE Data Reduction Pipeline. This data release contains ASPCAP parameters for 964,989 stars, including all APOGEE-2 targets expanded with new observations of 336,511 stars from the Apache Point Observatory observed until 2023 July 4. Overall, the newTeffvalues show excellent agreement with the IRFM scale, while the surface gravities exhibit slight systematic offsets compared to asteroseisimic gravities. The estimated precision ofTeffis between 50 and 70 K for giants and 70–100 K for dwarfs, while surface gravities are measured with a precision of 0.07–0.09 dex for giants. We achieve an estimated precision of 0.02–0.04 dex for multiple elements, including metallicity,α, Mg, and Si, while the precision of at least 10 elements is better than 0.1 dex. 
    more » « less
    Free, publicly-accessible full text available July 17, 2026
  2. Abstract Metallicities of both gas and stars decline toward large radii in spiral galaxies, a trend known as the radial metallicity gradient. We quantify the evolution of the metallicity gradient in the Milky Way as traced by APOGEE red giants with age estimates from machine learning algorithms. Stars up to ages of ∼9 Gyr follow a similar relation between metallicity and Galactocentric radius. This constancy challenges current models of Galactic chemical evolution, which typically predict lower metallicities for older stellar populations. Our results favor anequilibrium scenario, in which the gas-phase gradient reaches a nearly constant normalization early in the disk lifetime. Using a fiducial choice of parameters, we demonstrate that one possible origin of this behavior is an outflow that more readily ejects gas from the interstellar medium (ISM) with increasing Galactocentric radius. A direct effect of the outflow is that baryons do not remain in the ISM for long, which causes the ratio of star formation to accretion, Σ ̇ / Σ ̇ in , to quickly become constant. This ratio is closely related to the local equilibrium metallicity, since its numerator and denominator set the rates of metal production by stars and hydrogen gained through accretion, respectively. Building in a merger event results in a perturbation that evolves back toward the equilibrium state on ∼Gyr timescales. Under the equilibrium scenario, the radial metallicity gradient is not a consequence of the inside-out growth of the disk but instead reflects a trend of declining Σ ̇ / Σ ̇ in with increasing Galactocentric radius. 
    more » « less
    Free, publicly-accessible full text available July 10, 2026
  3. This paper re-examines the basis for each eddy current stiffness term computed from prior published steady-state eddy current models. The paper corrects prior analysis work by confirming, through the use of 2-D and 3-D dynamic finite element analysis modelling, that when a magnetic source is moving over an infinite-wide and infinite-long conductive sheet guideway the steady-state lateral and translational stiffness terms will be zero and only the vertical coupled stiffness terms need to be modelled. Using these observations, a much simplified 6 degrees-of-freedom (DoF) linearized eddy current dynamic force model can be used to compute the steady-state force changes in eddy current based maglev vehicles when operating over a wide uniform conductive track. 
    more » « less
  4. This paper used an analytic based 3-D second order vector potential model to study the vertical dynamic force ripple and dynamic airgap height change when using a one pole-pair electrodynamic wheel (EDW) maglev vehicle. A one-pole pair EDW creates the lowest lift specific power; however transient finite element analysis (FEA) also shows that the one pole-pair EDW will create a large oscillating vertical force when maintaining a static airgap height. A dynamically coupled eddy current model was used to confirm that when the airgap length is allowed to change with time then an increase in vertical airgap creates a large decrease in lift force thereby mitigating any large oscillatory airgap height changes from being created by the one pole-pair EDW. The small airgap height variation was exper-imentally confirmed by using a four-wheeled proof-of-principle radial EDW maglev vehicle. 
    more » « less
  5. The rotation of an electrodynamic wheel (EDW) above a flat conductive, non-magnetic, track induces currents in the track that can create lift and thrust/braking force. This paper presents a new type of dual-EDW that consists of two EDWs in series that can also create a controllable lateral force. The magnitude and direction of the lateral force can be changed via the relative phase angle shifting of the two rotors. The changes in the lateral force magnitude as well as direction are shown to not affect the lift and thrust force magnitude. The geometric analysis of the design is presented and the practical difficulty of implementing the design is also discussed. 
    more » « less
  6. This paper reports on the electromagnetic analysis and experimental testing of a newly invented six-degree of freedom electrodynamic wheel (EDW) magnetic levitation (maglev) vehicle that can stably levitate over a passive low-cost U-guideway. The U-guideway is composed of two sections of L-track aluminum sheet. Both a radial and an axial proof-of-principle EDW maglev vehicle has been built and experimentally tested. The EDW-maglev vehicle contains four one pole-pair diametric magnetized magnets that are driven using a low-cost motor and motor controller. No advanced controls are needed to provide basic stability. A 3-D transient finite element analysis model was used to study the 3-D forces created when the magnets are rotated over the aluminum L-track. The track design study showed that in addition to providing lateral recentering force the L-track can also be used to increases thrust and lift force. 
    more » « less
  7. ABSTRACT We derive empirical constraints on the nucleosynthetic yields of nitrogen by incorporating N enrichment into our previously developed and empirically tuned multizone galactic chemical evolution model. We adopt a metallicity-independent (‘primary’) N yield from massive stars and a metallicity-dependent (‘secondary’) N yield from AGB stars. In our model, galactic radial zones do not evolve along the observed [N/O]–[O/H] relation, but first increase in [O/H] at roughly constant [N/O], then move upward in [N/O] via secondary N production. By t ≈ 5 Gyr, the model approaches an equilibrium [N/O]–[O/H] relation, which traces the radial oxygen gradient. Reproducing the [N/O]–[O/H] trend observed in extragalactic systems constrains the ratio of IMF-averaged N yields to the IMF-averaged O yield of core-collapse supernovae. We find good agreement if we adopt $$y_\text{N}^\text{CC}/y_\text{O}^\text{CC}=0.024$$ and $$y_\text{N}^\text{AGB}/y_\text{O}^\text{CC} = 0.062(Z/Z_\odot)$$. For the theoretical AGB yields we consider, simple stellar populations release half their N after only ∼250 Myr. Our model reproduces the [N/O]–[O/H] relation found for Milky Way stars in the APOGEE survey, and it reproduces (though imperfectly) the trends of stellar [N/O] with age and [O/Fe]. The metallicity-dependent yield plays the dominant role in shaping the gas-phase [N/O]–[O/H] relation, but the AGB time-delay is required to match the stellar age and [O/Fe] trends. If we add ∼40 per cent oscillations to the star formation rate, the model reproduces the scatter in the gas phase [N/O]–[O/H] relation observed in external galaxies by MaNGA. We discuss implications of our results for theoretical models of N production by massive stars and AGB stars. 
    more » « less
  8. Abstract Applications of quantum information science (QIS) generally rely on the generation and manipulation of qubits. Still, there are ways to envision a device with a continuous readout, but without the entangled states. This concise perspective includes a discussion on an alternative to the qubit, namely the solid-state version of the Mach–Zehnder interferometer, in which the local moments and spin polarization replace light polarization. In this context, we provide some insights into the mathematics that dictates the fundamental working principles of quantum information processes that involve molecular systems with large magnetic anisotropy. Transistors based on such systems lead to the possibility of fabricating logic gates that do not require entangled states. Furthermore, some novel approaches, worthy of some consideration, exist to address the issues pertaining to the scalability of quantum devices, but face the challenge of finding the suitable materials for desired functionality that resemble what is sought from QIS devices. 
    more » « less